住宅の熱・換気性能現場測定法の理論と可能性実験 Theory and feasibility experiment of field measurement method for thermal and ventilation performance of residential houses

技術7ェ□- ○奥山 博康(神奈川大学) 正会員 吉浦 温雅(神奈川大学) 非会員 菅野 康介(高砂熱学工業) Hiroyasu OKUYAMA^{*1} Atsumasa YOSHIURA^{*1} Kosuke KANNO^{*2} *¹Kanagawa University *²Takasago Thermal Engineering

Synopsis: On-site measurements for system parameters of heat loss, effective capacity, solar heat gain coefficients, ventilation rate, and effective mixing volume involve changes in solar radiation and outdoor temperature, so a dynamic measurement method based on least squares is well suited. We have therefore constructed a device that generates sine wave excitation of electrical heat and carbon dioxides gas. Short-term moving averages of measurement data are useful when estimating the measurement uncertainty standard deviation, whereas longer-term moving averages are useful when estimating the system parameters. The optimal moving average term for the system parameter estimation can be decided by the index β , which is the premises discrepancy ratio of system identification. The feasibility of this method is confirmed by experiments on a small house.

1. はじめに

住宅等の熱・換気性能を表す熱損失係数,有効熱容量,日 射取得係数に加え,換気量と有効混合容積等の複数のシス テム・パラメータを現場測定するためには,変動する外気 温,室温,日射量と外風圧に曝されていることもあり,最 小二乗法を基本にする動的測定法が適している.また従来 の測定法では,日射熱取得係数,有効熱容量と換気の有効 混合容積の推定法および信頼性と不確かさ評価方法も不十 分である.これに対し多数室モデルでの一般的システム同 定理論1)を考案しているが,まずは単室モデルから実験的 な検証を行うため,単室モデルで簡便に同定する表計算ソ フトも開発した.またシステム・パラメータ同定の正弦波 励振発生装置も試作し,小規模ハウスで実験を行った.

2. 熱性能係数のシステム同定と不確かさ評価法

既報2)の単室モデルの換気量と有効混合容積の同定理論 と本質は同様であるが,熱性能のシステム・パラメータ同 定理論と不確かさと信頼性評価方法に関して述べる.

2.1 システム・パラメータの回帰式

室温変化を(1)式で表す.ここに室温はx,外気温はxo, 水平面全日射量はg,電熱ヒータ等の発熱量はh,室の相当 熱容量はm,室内外の総合熱損失係数はc,日射熱取得係 数はrとする.これをマトリックス表示し(2)式で表す.

$$m \cdot \dot{x} = c \cdot (x_o - x) + r \cdot g + h \tag{1}$$

$$h = \begin{bmatrix} \dot{x} & (x - x_o) & -g \end{bmatrix} \cdot \begin{bmatrix} m \\ c \\ r \end{bmatrix} \triangleq \mathbf{Z} \cdot \mathbf{a}$$
(2)

2.2入力値と状態値の△t区間積分

各入力値 x_o , g, h と状態値x の Δt 区間で積分する式を記述する. 発熱量の Δt 区間での積分は次式で定義し近似計算される.

$$h_{k} \triangleq \int_{(k-1)\Delta t}^{k\Delta t} h(t)dt \simeq \left\{h(k\Delta t) + h((k-1)\Delta t)\right\}\Delta t / 2$$
(3)

微分値の
$$\Delta t$$
区間での積分は次式で定義し計算される.

$$d_k \triangleq \int_{(k-1)\Delta t} \dot{x}(t) dt \simeq x(k\Delta t) - x((k-1)\Delta t)$$

状態値のAt区間での積分は次式で定義し計算される.

$$x_{k} \triangleq \int_{(k-1)\Delta t}^{\kappa_{\Delta t}} \{x(t) - x_{o}(t)\} dt \simeq \{x(k\Delta t) + x((k-1)\Delta t)\}\Delta t / 2 - \{x_{o}(k\Delta t) + x_{o}((k-1)\Delta t)\}\Delta t / 2$$
(5)

水平面全日射量のΔt区間での積分は次式で定義する.

$$g_{k} \triangleq \int_{(k-1)\Delta t}^{k\Delta t} -g(t)dt \simeq -\{g(k\Delta t) + g((k-1)\Delta t)\}\Delta t / 2$$
(6)

2.3 回帰式と最小二乗解

測定値マトリックス \mathbf{Z}_k は前述の要素を用い次式で定義される.

$$\mathbf{Z}_{k} \stackrel{\text{\tiny{def}}}{=} \begin{bmatrix} d_{k} & x_{k} & g_{k} \end{bmatrix} \tag{7}$$

$$h_k = \mathbf{Z}_k \cdot \mathbf{a} \tag{8}$$

この方程式誤差を次式で定義する. $e_{\iota} \triangleq h_{\iota} - \mathbf{Z} \cdot \mathbf{a}$

$$J \triangleq \sum_{k=1}^{nt} {}^{t} e_{k} \cdot e_{k} \tag{10}$$

(9)

ここに同定の総時間ステップ数を*m*とした. *J*をaで微分して0と置くことでシステム・パラメータの推定式が得られる.

$$\hat{\mathbf{a}} = \left[\sum_{k=1}^{m} {}^{t} \mathbf{Z}_{k} \cdot \mathbf{Z}_{k}\right]^{-1} \cdot \left[\sum_{k=1}^{m} {}^{t} \mathbf{Z}_{k} \cdot h_{k}\right]$$
(11)

2.4 決定係数

回帰式の残差を次式で定義する.

$$\mathbf{v}_k \triangleq \mathbf{h}_k - \mathbf{Z}_k \cdot \hat{\mathbf{a}} \tag{12}$$

推定結果の信頼性評価のために決定係数を用いる.まず 残差二乗和は次式で計算される.

$$s(\hat{\mathbf{a}}) = \sum_{k=1}^{nt} {}^{t} v_k \cdot v_k = \sum_{k=1}^{nt} {}^{t} \left(h_k - {}^{t} \mathbf{Z}_k \cdot \hat{\mathbf{a}} \right) \cdot \left(h_k - {}^{t} \mathbf{Z}_k \cdot \hat{\mathbf{a}} \right)$$
(13)

総変動は次式で計算される

$$s_{h} = \sum_{k=1}^{nt} {}^{t} \left(h_{k} - \overline{h} \right) \cdot \left(h_{k} - \overline{h} \right) = \sum_{k=1}^{nt} h_{k}^{2} - \frac{1}{nt} \left(\sum_{k=1}^{nt} h_{k} \right)^{2}$$
(14)

これらから決定係数 COD は次式で計算される.

$$COD = 1 - s(\hat{\mathbf{a}})/s_h \tag{15}$$

2.5 分散共分散マトリックスと同定前提の不適合率

次に推定パラメータの不確かさ評価のために,これらの 分散・共分散マトリックスを求める.まず a の不確かさは a の期待値からの差として次式で記述できる.

$$\hat{\mathbf{a}} - E(\hat{\mathbf{a}}) = \left[\sum_{k=1}^{nt} {}^{t} \mathbf{Z}_{k} \cdot \mathbf{Z}_{k}\right]^{-1} \cdot \left[\sum_{k=1}^{nt} {}^{t} \mathbf{Z}_{k} \cdot h_{k}\right]$$
$$- E\left\{\left[\sum_{k=1}^{nt} {}^{t} \mathbf{Z}_{k} \cdot \mathbf{Z}_{k}\right]^{-1} \cdot \left[\sum_{k=1}^{nt} {}^{t} \mathbf{Z}_{k} \cdot (\mathbf{Z}_{k} \cdot \mathbf{a} + e_{k})\right]\right\}$$
$$= \hat{\mathbf{a}} - \hat{\mathbf{a}} - \left[\sum_{k=1}^{nt} {}^{t} \mathbf{Z}_{k} \cdot \mathbf{Z}_{k}\right]^{-1} \cdot \left[\sum_{k=1}^{nt} {}^{t} \mathbf{Z}_{k} \cdot e_{k}\right]$$
$$= - \left[\sum_{k=1}^{nt} {}^{t} \mathbf{Z}_{k} \cdot \mathbf{Z}_{k}\right]^{-1} \cdot \left[\sum_{k=1}^{nt} {}^{t} \mathbf{Z}_{k} \cdot e_{k}\right]$$
(16)

これから分散共分散マトリックスは次式で記述される

$$\begin{split} \mathbf{\Lambda}_{\mathbf{a}} &= E\left[\left(\hat{\mathbf{a}} - E(\hat{\mathbf{a}})\right) \cdot {}^{t}\left(\hat{\mathbf{a}} - E(\hat{\mathbf{a}})\right)\right] \\ &= E\left[\left[\sum_{k=1}^{nt} {}^{t} \mathbf{Z}_{k} \cdot \mathbf{Z}_{k}\right]^{-1} \cdot \left[\sum_{k=1}^{nt} {}^{t} \mathbf{Z}_{k} \cdot E\left(e_{k} \cdot {}^{t}e_{k}\right) \cdot \mathbf{Z}_{k}\right]\right] \\ &\cdot \left\{\left[\sum_{k=1}^{nt} {}^{t} \mathbf{Z}_{k} \cdot \mathbf{Z}_{k}\right]^{-1}\right\} \\ &= E\left(e_{k} \cdot {}^{t}e_{k}\right) \cdot {}^{t}\left\{\left[\sum_{k=1}^{nt} {}^{t} \mathbf{Z}_{k} \cdot \mathbf{Z}_{k}\right]^{-1}\right\} \triangleq \left[\frac{\sigma_{m}^{2}}{s_{c,m}} \frac{s_{m,c}}{\sigma_{c}^{2}} \frac{s_{m,r}}{s_{r,r}}\right]$$
(17)

この右辺の回帰式誤差の期待値 *E*(*e_k*・*'e_k*)は2 通りの取り方 がある.一つは回帰式残差の平均とするものである.こう した残差には,測定不確かさだけでなく,システム同定の 前提が十分に成立しない実際的な影響も表れている

$$E_r(e_k \cdot {}^t e_k) \triangleq \frac{1}{nt-3} \sum_{k=1}^{nt} v_k \cdot {}^t v_k$$
(18)

一方、測定不確かさだけが誤差の原因と見なして、これ からの伝播として $E_m(e_k \cdot e_k)$ を計算することもできる. ヒー タ発熱の測定不確かさ標準偏差を σ_h 、温度の測定不確かさ 標準偏差を σ_x 、水平面全日射量の測定不確かさ標準偏差を σ_g とする. このとき4種の Δt 区間の積分値 h_k 、 d_k 、 x_k 、 g_k の持つ不確かさ分散 $_s\sigma_h$ 、 $_d\sigma_x$ 、 $_s\sigma_g$ は誤差伝播則によ り次からの式で計算される.

$${}_{s}\sigma_{h}^{2} = \Delta t^{2} \cdot \sigma_{h}^{2}/2 \tag{19}$$

$${}_{d}\sigma_{x}^{2} = 2\sigma_{x}^{2} \tag{20}$$

$${}_{s}\sigma_{x}^{2} = \Delta t^{2}\sigma_{x}^{2} \tag{21}$$

$$_{g}\sigma_{g}^{2} = \Delta t^{2} \cdot \sigma_{g}^{2}/2$$
 (22)

これらの記号定義を用いて測定不確かさだけによる回帰 式誤差の不確かさ分散の期待値 $E_m(e_k, e_k)$ は誤差伝播則によ り次式で計算される.これが回帰式誤差の期待値のもう一 つの取り方である.

$$E_m(e_k \cdot {}^te_k) = {}_s\sigma_h^2 + m^2 \cdot {}_d\sigma_x^2 + c^2 \cdot {}_s\sigma_x^2 + r^2 \cdot {}_s\sigma_g^2 \qquad (23)$$

前述の2種類の期待値 $E(e_k, e_k)$ の其々から(17)式を用い てシステム・パラメータの不確かさ標準偏差, σ_m , σ_c , σ_r と $_m\sigma_m$, $_m\sigma_c$, $_m\sigma_r$ が計算できるので両者の比率をとり, シ ステム同定前提の不適合率 β_m , β_c , β_r も計算できる. まず 其々の分散共分散マトリックスを次の記号と式で定義する.

$${}_{r} \mathbf{\Lambda}_{\mathbf{a}} \triangleq E_{r} \left(e_{k}^{t} e_{k} \right)^{t} \left\{ \left[\sum_{k=1}^{m} {}^{t} \mathbf{Z}_{k} \mathbf{Z}_{k} \right]^{-1} \right\} \triangleq \left[{}_{r} \sigma_{m}^{2} {}_{r} s_{m,c} {}_{r} s_{m,r} \right]_{r} s_{r,r} \sigma_{c}^{2} {}_{r} s_{c,r} \sigma_{c}^{2} \sigma_{r}^{2} \sigma_{r}$$

以上の記号定義と(24)式と(25)式の比較観察によれば, 其々のパラメータの不適合率は次式の様に結局は同じ値の βと見なせる.

$$\frac{{}_{r}\sigma_{m}}{{}_{m}\sigma_{m}} = \frac{{}_{r}\sigma_{c}}{{}_{m}\sigma_{c}} = \frac{{}_{r}\sigma_{r}}{{}_{m}\sigma_{r}} = \sqrt{\frac{E_{r}\left(e_{k}\cdot{}^{t}e_{k}\right)}{E_{m}\left(e_{k}\cdot{}^{t}e_{k}\right)}} \triangleq \beta$$
(26)

不適合率βが1よりも著しく大きい場合には、同定モデ ルの不合理や、測定過程で前提が成立しなかった可能性が あるので、それが許容できるものか、やり直しかの検討が 必要である.

3. システム同定の表計算シートの概要

単室モデルの室温変化もトレーサガス濃度変化も熱回路 網の常微分方程式モデルで表される.システム同定される パラメータは、伝熱系では総合熱損失係数ct[W/K],有効 熱容量mt[kJ/K]と日射熱取得係数nt [m²]であり、換気系で は換気量cv[m³h]と有効混合容積mv[m³]とする.測定値 として、伝熱系では温度,電熱発熱量と水平面全日射量, 換気系ではガス濃度とガス発生量の数分間隔の時系列値を 表計算に与え、低周波濾波のため任意の時間の移動平均を 施した後に、最小二乗法により、前述の5種のシステムパ ラメータ推定を行い、得られた常微分方程式での残差を利 用して、其々のパラメータの不確かさ標準偏差 σ_{ct} , σ_{mt} , σ_{rt} , σ_{cv} , σ_{mv} を求め、決定係数CODと同定前提の不適合率 β 2) も求める.なお移動平均の時間を伝熱系では T_{mt} [h],換 気系では T_{mv} [min]と表す.

4.実験の概要

横浜キャンパス内に設置した測定対象とするプレファ ブ建物の外観は写真1に、その仕様とシステム同定モデル を図1に示す.アルコール燃焼でトレーサの炭酸ガスを発 生する装置を写真2に示す.温度とガス濃度等の超小型デ ータロガーと励振発生装置およびPCの冷却ファン程度の 大きさの撹拌ファンの配置を図2に示す.

4.1 熱性能測定法の実験 同定期間は2014年12月5日 14:49~12月10日03:55まで,同定間隔 *At*=1[min]とした. 電熱器の加熱はPulse Width Modulation 制御による装置を試 作し,周期72[h],休止期間0[h],最大1014[W]を2回繰返 す正弦波で行い,室温湿度,外気温湿度,水平面全日射量,

室内電力消費量を測定した.電力消費量は他の電気機器も 含めパルス出力電力センサで計測し,記録は他の測定量に ついても主として超小型データロガーを用いた.図5には 6日分の水平面全日射量と外気温の変化を示す.当建物は 建物に挟まれたドライエリアにあり,日当たりは良くない 状況にある.図6には電熱器を含め室内にある全ての電気 機器の消費電力の変化を示す.

4.2 換気性能測定法の実験 アルコール流量の正弦波の制 御は、シリンジポンプをPC制御により行う写真2に示す試 作装置を用いた. 燃焼皿の中央部からニードルを約6[mm] 突出し円錐状に岩綿を被せアルコールを浸潤させることで 炎の大きさはアルコール流量[ml/min]に応じ自然に変化す るようにした. この流量による炭酸ガス発生量[*l*/min]は燃 焼の化学反応式より 0.59[*l*/m*l*]とした. 今回は正弦波 2 山を 作り、その後の減衰期間も考慮する程度の測定期間とし、 同定期間は12月3日15:42~12月4日04:00まで時間間隔 Δt=1[min]とした. この間の内外温度差は平均5[℃]程度だ った. アルコール流量の正弦波の周期は30[min]、最小流量 0.135[ml/min]の休止期間は60[min]、最大流量は1.5[ml/min] を試した. なお室内と外気の炭酸ガス濃度は超小型データ ロガーで測定した.

4.3 測定値の分析法 方法は概ね既報2)3)と同様とした. ただし測定不確かさ標準偏差2) σ_x , σ_g , σ_h は測器の±X[%] 等から定める方法は実際的ではないので,短い測定間隔(本 件では1分間)の時系列で顕在化するギザギザを滑らかに する最小時間として, 熱測定では9分間(10個の測定値) で,換気測定では5分間(6個の測定値)の移動平均を施 して得られる変化曲線を測定不確かさ平滑化曲線と名付け, 元の測定値との偏差を測定期間で統計分析し測定不確かさ 標準偏差とした. そして測定不確かさ平滑化曲線値を元の 測定値と見なして同定と不確かさ評価を行った. 一方粗い モデルの同定に必要な低周波濾波を目的とした移動平均期 間 T_m は数十分から数時間と比較的に長くした.なお移動平 均処理を加えた測定値の使用可能期間は元の両端から $T_m/2$ ずつ狭まることに留意した.

4.4結果と考察 熱性能測定の結果については表1に示す. 低周波濾波である移動平均の時間を長くするに伴い決定係 数は小さくなるが,日射熱取得係数以外は,あまり大きく 変化しない.同定前提の不適合率βが8時間で最小となる ので,本件での最適時間と考えられる.換気測定について は表2に示す.移動平均期間を長くする程に決定係数が小 さくなるが、不適合率βは90分で最小で最適推定値を与え る様に思われるが、他のβとの差異は小さい.様々な移動 平均期間によるガス発生曲線を図3に示す.2山の形状特 徴は移動平均期間が90分になると失われ、なだらかな1 山になる.さらに120分に長くなると山の中央部に不自然 なイボが発生する.もし実際にも1山のガス発生を与えて いれば、最適移動平均期間はもっと短くなったのではない かと思われる.設計上の総合熱損失係数と幾何的室容積は 図1の中に記すが、これらに近い同定結果である.また最 適同定されたパラメータで予測計算モデルを作りシミュレ ーションを行い、室温と室ガス濃度の予測値と実測値の比 較を図4と図7に示す.これらの予測値は実験値を良好に トレースしている.ただしアルコール燃焼による炭酸ガス の正弦波発生装置は、実用機に向けてさらに精度と経済性 の改良と検証が必要である.

5. まとめ

単室建物モデルの熱性能システム同定と不確かさと信 頼性の評価方法を述べた.正弦波の励振発生の試作装置と システム同定の表計算プログラムを試した結果,総合熱損 失係数等は設計値等に近い妥当な同定結果が得られた.ま た実際的な測定不確かさ標準偏差の決定法も考案し試した. さらに最適移動平均時間は前提の不適合率 β で決定できる ことも確かめた.

[謝辞]

日本工業検査の益子智久氏には表計算修正と分析で、深 井一夫先生には測定機器等の助言で、御世話になりました.

参考文献

- Hiroysu Okuyama, et al. System parameter identification theory and uncertainty analysis methods for multi-zone building heat transfer and infiltration, Building and Environment, vol.54, 2012, pp39-52
- Hiroyasu Okuyama, et al. Uncertainty analysis and optimum concentration decay term for air exchange rate measurements: Estimation methods for effective volume and infiltration rate, Building and Environment, vol. 49, 2012, pp182–192.
- 3) 奥山博康, 単室建物モデルの熱性能現場測定法, 日本建築学会大会梗概集, 環境工学 II, pp23-24, 2013 年 8 月

写真1 実験建物の外観

写真2 炭酸ガス正弦波発生装置

Tmt [h]	mt [kJ/K]	ct [W/K]	<i>rt</i> [m2]	COD	σmt	σct	σrt	β
0	188.3	55.9	0.88	0.987	2.30	0.043	0.036	0.2041
1	229.9	56.2	1.24	0.987	2.36	0.044	0.037	0.1713
2	240.6	56.2	1.33	0.986	2.39	0.044	0.037	0.1660
8	265.6	56.6	1.80	0.985	2.51	0.046	0.039	0.1577
16	264.9	56.8	2.23	0.984	2.58	0.048	0.040	0.1627
24	204.8	57.9	3.92	0.970	3.56	0.066	0.055	0.2898

表2 換気性能測定法実験の同定結果

Tmv [min]	<i>mv</i> [m3]	<i>cv</i> [m3/h]	COD	σmv	σεν	β
0	14.8	6.78	0.907	0.18	0.19	0.4347
10	15.1	6.86	0.907	0.18	0.19	0.4275
30	15.5	7.09	0.905	0.18	0.20	0.4201
60	16.1	7.26	0.900	0.19	0.20	0.4154
90	16.7	7.31	0.893	0.19	0.21	0.4152
120	16.8	7.29	0.892	0.19	0.21	0.4154

図4 内外気温変化の実験値と予測値の比較

図5 水平面全日射量と外気温

図6 電熱ヒータの加熱

