多数室建物の伝熱・換気のシステム同定理論と不確かさ分析法及び事例検討 System Parameter Identification Theory and Uncertainty Analysis Methods for Multi-zone Building Heat Transfer and Infiltration and Case Study

正会員 奥山 博康(神奈川大学)

Hiroyasu OKUYAMA

Kanagawa University

Synopsis: Methods for on-site measurement of building thermal performance system parameters such as coefficient of heat loss, solar heat gain, effective thermal capacity, infiltration rate, and effective mixing volume are very important, yet a nontrivial task. In this regard, a state space equation model, referred to as a "thermal network model," has been devised to generalize such multi-zone heat transfer system and tracer gas diffusion system measurements. This model is composed of three parameter types, and we have developed a system parameter identification theory and uncertainty analysis method using least squares, as well as actual measurement systems. In the present paper, we improve the least-squares regression equation, the uncertainty analysis method, and the reliability evaluation method. We investigate appropriate excitation waveforms and frequencies for heating and tracer gas release, as well as a low-pass filter for preprocessing measurement data. We verify these theories and methods using computer-simulated measurement.

-3037-

1. はじめに

多数室建物での熱損失係数,日射取得係数と有効熱容量 の現場測定法は重要である.また正しい評価のためには同 時に多数室換気測定を行うことが望ましい.1980年代初期 の奥山の理論1)に関し、ここ数年は風量収支等の拘束条件 の組み込み定式化法,不確かさ分析法,信頼性評価指標, さらに最適励振と測定値の濾波法等の再考と改良を行って いる2).さらにこれらの改良の効果を,建物の熱損失係数 と隙間風性能に関する摸擬測定の事例で検証した.

2. パラメタの観測方程式

拡散系の空間的離散化モデルの骨組みは一般に(1)式の完 全連結システムの節点方程式で記述できる.これにより状 態空間方程式とも呼ぶ連立常微分方程式(2)が構成される. ここに x_j , m_{ij} , c_{ij} , r_{ij} は各々,節点jの温度等の拡散ポテン シャル,節点iに関する一般化容量,節点jから節点iへの 一般化コンダクタンス,熱流等の発生源jから節点iへの自 由入力係数である.またnは未知数扱いの,noは既知数扱 いの節点数,ngは発生源の総数である.

$$\sum_{j=1}^{n} m_{i,j} \cdot \dot{x}_{j} = \sum_{j=1}^{n+no} c_{i,j} \cdot (x_{j} - x_{i}) + \sum_{j=1}^{ng} r_{i,j} \cdot g_{j}$$
(1)
$$\mathbf{M}\dot{\mathbf{x}} = \mathbf{C}\mathbf{x} + \mathbf{C}_{\mathbf{x}}\mathbf{x}_{\mathbf{0}} + \mathbf{R}\mathbf{g}$$
(2)

この(2)式を次のパラメタの観測方程式(3)に変形する. 一 つの節点まわりには既知パラメタが少なくとも一個あると し、変数 x_j か g_j との積によって作られる項は左辺の y の中 に移項する. また被同定パラメタ m_{ij} , c_{ij} , r_{ij} によるベクト ルを m, c, r として、これに係るマトリックスは D, X, G と定める. これらをまとめて次数 na の a と $n \times na$ の Z を 定める.

$$\mathbf{y} = \mathbf{D}(\dot{x}_i)\mathbf{m} + \mathbf{X}(x_i)\mathbf{c} + \mathbf{G}(g_i)\mathbf{r} = \begin{bmatrix} \mathbf{D}, \mathbf{X}, \mathbf{G} \end{bmatrix} \begin{bmatrix} \mathbf{m} \\ \mathbf{c} \\ \mathbf{r} \end{bmatrix} = \mathbf{Z}\mathbf{a} \quad (3)$$

測定時間間隔 Δt ,総測定時点数はntで測定期間はTとする. (k-1) Δt から $k\Delta t$ までの線形補間積分により次式の y_k , Z_k を定義し(6)をパラメタの観測方程式とする.

$$\mathbf{y}_{k} = \int_{(k-1)\Delta t}^{k\Delta t} \mathbf{y} \, dt \quad (4) \qquad \mathbf{Z}_{k} = \int_{(k-1)\Delta t}^{k\Delta t} \mathbf{Z} \, dt \quad (5) \qquad \mathbf{y}_{k} = \mathbf{Z}_{k} \mathbf{a} \quad (6)$$

3. 最小二乗法の二重適用による解式

(6)式の左辺から右辺を引いた方程式誤差を ne_k とし ne_k ・ ne_k の時間総和を a により微分し最小化条件を記述する. こ れが拘束条件と複合して持つ誤差を e_a とし(7)式を記述する. またパラメタ間には,流量収支,伝導の対称性,伝導率等 の上位のパラメタへ回帰する n_s 本の拘束条件式が存在する ので Δt Sa= Δt d なる拘束条件式が記述できる. これも最小二 乗条件式を取り複合条件式で持つ誤差を e_s とすれば(8)式と なる.

$$\mathbf{e}_{a} = \sum_{k=1}^{m} {}^{t} \mathbf{Z}_{k} \mathbf{y}_{k} - \sum_{k=1}^{m} {}^{t} \mathbf{Z}_{k} \mathbf{Z}_{k} \mathbf{a} \quad (7) \qquad \mathbf{e}_{s} = \Delta t^{2} \cdot {}^{t} S \mathbf{d} - \Delta t^{2} \cdot {}^{t} S S \mathbf{a} \quad (8)$$

(7)式と(8)式を束ねて次式の複合回帰方程式誤差 e を定義する. 次式で簡単化のためにベクトル b とマトリックス F を 定める.

$$\mathbf{e} = \begin{bmatrix} \mathbf{e}_{a} \\ \mathbf{e}_{s} \end{bmatrix} = \begin{bmatrix} \sum_{k=1}^{nt} {}^{t} \mathbf{Z}_{k} \mathbf{y}_{k} \\ \Delta t^{2} \cdot {}^{t} S \mathbf{d} \end{bmatrix} - \begin{bmatrix} \sum_{k=1}^{nt} {}^{t} \mathbf{Z}_{k} \mathbf{Z}_{k} \\ \Delta t^{2} \cdot {}^{t} S \mathbf{S} \end{bmatrix} \mathbf{a} = \mathbf{b} - \mathbf{F} \mathbf{a} \quad (9)$$

不偏推定をするための重みマトリックス $W_a \ge W_s \ge \phi$ 、 する. W_a は $\Sigma' Z_k \cdot Z_k$ (na×na)の各i行の最大絶対値を探して 二乗の逆数を W_a のi列に代入するが、ある行が全て0の場 合は1を代入する. 故に W_a の次数は (na×na)となる. 同様 に $\Delta t^2 \cdot SS$ について W_s (na×na)を作る. これらの $W_a \ge W_s$ を対角に持つ重みマトリックスWにより 'eWe の評価関数 を作る. 二重の最小二乗による a の推定値が(10)式となる. また推定パラメタの不確かさ分散共分散マトリックス Λ_a は、方程式誤差の期待値マトリックスからの伝搬として計 算すれば(11)式が得られる.

$$\hat{\mathbf{a}} = \begin{pmatrix} {}^{t}\mathbf{F}\mathbf{W}\mathbf{F} \end{pmatrix}^{-1} \cdot \begin{pmatrix} {}^{t}\mathbf{F}\mathbf{W}\mathbf{b} \end{pmatrix} (10)$$
$$\mathbf{\Lambda}_{a} = \begin{pmatrix} {}^{t}\mathbf{F}\mathbf{W}\mathbf{F} \end{pmatrix}^{-1} \begin{pmatrix} {}^{t}\mathbf{F}\mathbf{W}E(\mathbf{e} \cdot {}^{t}\mathbf{e})\mathbf{W}\mathbf{F} \end{pmatrix}^{t} \left\{ \begin{pmatrix} {}^{t}\mathbf{F}\mathbf{W}\mathbf{F} \end{pmatrix}^{-1} \right\} (11)$$

右辺の中にある *E*(e⁻¹e)の方程式誤差期待値マトリックスは,共分散を0とみなせば次式となる.

$$E(\mathbf{e} \cdot {}^{t}\mathbf{e}) = \begin{bmatrix} E(\mathbf{e}_{a} \cdot {}^{t}\mathbf{e}_{a}) & \mathbf{0} \\ \mathbf{0} & E(\mathbf{e}_{s} \cdot {}^{t}\mathbf{e}_{s}) \end{bmatrix}$$
(12)

右辺の誤差の期待値E()は二通り定義でき、以降で方程 式残差からのものには添え字r(residue)を、測定不確かさか らのものにはm(measurement)を付けて表わすことにする.

4. 方程式残差からの不確かさ伝播と決定係数

(6)式の残差は次の(13)式で計算され、その期待値マトリックスは(14)式で計算される.

$$\mathbf{v}_{k} = \mathbf{y}_{k} - \mathbf{Z}_{k} \cdot \hat{\mathbf{a}} \quad (13)$$
$$E(\mathbf{v}_{k} \cdot {}^{t}\mathbf{v}_{k}) = (1/(nt - na)) diag \sum_{k=1}^{nt} \mathbf{v}_{k} \cdot {}^{t}\mathbf{v}_{k} \quad (14)$$

これにより \mathbf{e}_{a} ・ \mathbf{e}_{a} の期待値マトリックスは(15)式で計算され、これを適用した場合の Λ_{a} を, Λ_{a} とする.次に決定係数の算出に必要な残差二乗和は(16)式で計算される.

$$E_{r}(\mathbf{e}_{a} \cdot {}^{t}\mathbf{e}_{a}) = \sum_{k=1}^{m} {}^{t}\mathbf{Z}_{k} \cdot E(\mathbf{v}_{k} \cdot {}^{t}\mathbf{v}_{k}) \cdot \mathbf{Z}_{k} \quad (15)$$

$$\mathbf{s}(\hat{\mathbf{a}}) = \sum_{k=1}^{nt} {}^{t}\mathbf{v}_{k} \cdot \mathbf{v}_{k} = \sum_{k=1}^{nt} {}^{t}(\mathbf{y}_{k} - \mathbf{Z}_{k} \cdot \hat{\mathbf{a}}) \cdot (\mathbf{y}_{k} - \mathbf{Z}_{k} \cdot \hat{\mathbf{a}}) \quad (16)$$

総変動 sy は次の(17)式で計算される. さらにこれらの残差 二乗和と総変動から決定係数は次の(18)式で計算される.

$$s_{y} = \sum_{k=1}^{nt} {}^{t} (\mathbf{y}_{k} - \overline{\mathbf{y}}_{k}) \cdot (\mathbf{y}_{k} - \overline{\mathbf{y}}_{k}) = \sum_{k=1}^{nt} {}^{t} \mathbf{y}_{k} \cdot \mathbf{y}_{k} - \frac{1}{nt} \cdot \left(\sum_{k=1}^{nt} {}^{t} \mathbf{y}_{k}\right) \cdot \left(\sum_{k=1}^{nt} \mathbf{y}_{k}\right) (17)$$
$$COD = 1 - \frac{s(\hat{\mathbf{a}})}{s_{y}} \qquad (18)$$

拘束条件式の $E_r(\mathbf{e}_s \cdot \mathbf{t}_s)$ (na×na)は次式で計算する.

$$E_r(\mathbf{e}_s \cdot {}^t\mathbf{e}_s) = \Delta t^4 \left({}^t\mathbf{S}\mathbf{d} - {}^t\mathbf{S}\mathbf{S} \cdot \hat{\mathbf{a}} \right) \cdot {}^t \left({}^t\mathbf{S}\mathbf{d} - {}^t\mathbf{S}\mathbf{S} \cdot \hat{\mathbf{a}} \right) (19)$$

以上の $E_t(\mathbf{e}_a, \mathbf{e}_a)$ と $E_t(\mathbf{e}_s, \mathbf{e}_s)$ を(12)式に代入して(11)式によ り Λ_a を計算する. この対角要素から方程式残差起源の同 定パラメタ不確かさ分散が得られる.

5. 測定不確かさからの伝播

ガス濃度やガス発生量の測定不確かさ分散から推定パラ メタへの不確かさ伝播を記述する.いま $x_i \ge g_i$ の測定値が 瞬時的な測定不確かさ分散 $\sigma_x^2 \ge \sigma_g^2$ を持つとする.これら $\sigma_{x_i} \ge g_i \ge \Delta t$ の区間で積分した値と増分を時系列方向に総 和して用いるが $x_i \ge g_i$ に関する Δt 積分の不確かさ分散 s_x^2 , $s_x^2 = \sigma_x^2$, 増分計算結果の不確かさ分散 b_x^2 は,不確かさ伝播 則により次の様に計算される.

 ${}_{b}\sigma_{xi}^{2} = 2 \cdot \sigma_{xi}^{2} \quad (20)$ ${}_{s}\sigma_{xi}^{2} = (1/2) \cdot \Delta t^{2} \cdot \sigma_{xi}^{2} \quad (21) \quad {}_{s}\sigma_{gi}^{2} = (1/2) \cdot \Delta t^{2} \cdot \sigma_{gi}^{2} \quad (22)$ ここで測定データのベクトルと、これらが持つ不確かさ分 散ベクトルを次のように定義する.

$${}_{b}\mathbf{x}_{k} = {}^{t} \left({}_{b}x_{1k}, \cdots, {}_{b}x_{nk} \right) (23) \qquad {}_{b}\mathbf{\sigma}_{k} = {}^{t} \left({}_{b}\sigma_{x1}, \cdots, {}_{b}\sigma_{xn} \right) (24)$$

$${}_{s}\mathbf{x}_{k} = {}^{t} \left({}_{s}x_{1k}, \cdots, {}_{s}x_{nk}, \cdots, {}_{s}x_{n+no,k} \right) (25)$$

$${}_{s}\mathbf{\sigma}_{x} = {}^{t} \left({}_{s}\sigma_{x1}, \cdots, {}_{s}\sigma_{xn}, \cdots, {}_{s}\sigma_{xn+no} \right) (26)$$

$${}_{s}\mathbf{g}_{k} = {}^{t} \left({}_{s}g_{1k}, \cdots, {}_{s}g_{ng,k} \right) (27) {}_{s}\mathbf{\sigma}_{g} = {}^{t} \left({}_{s}\sigma_{g1}, \cdots, {}_{s}\sigma_{gng} \right) (28)$$

 bx_{k} , sx_{k} , g_{k} は各々真値に不確かさ bx_{k} , sx_{k} , s_{k} が加わったものと見なす. パラメタの推定不確かさ原因は $x_{j} \ge g_{j}$ の 測定不確かさだけとすれば, 真値の $x_{j} \ge g_{j}$ は状態方程式誤差を0にする. 従って(2)式等から次式が記述できる.

$${}_{n}\boldsymbol{\varepsilon}_{k} = -\mathbf{M} \cdot {}_{b}\mathbf{x}_{k} + \begin{bmatrix} \mathbf{C} & \mathbf{C}_{o} \end{bmatrix} \cdot {}_{s}\mathbf{x}_{k} + \mathbf{R} \cdot {}_{s}\mathbf{g}_{k}$$
$$= -\mathbf{M} \cdot {}_{b}\mathbf{s}_{xk} + \begin{bmatrix} \mathbf{C} & \mathbf{C}_{o} \end{bmatrix} \cdot {}_{s}\mathbf{s}_{xk} + \mathbf{R} \cdot {}_{s}\mathbf{s}_{gk} \quad (29)$$

状態方程式誤差が $x_j \ge g_j$ の測定不確かさだけに起因する とすれば、方程式誤差 $_{nSk}$ の期待値マトリックスは次式で計 算される.ここに不確かさ $_{bSxk}$ 、 $_{sxk}$ 、 $_{sgk}$ の間での共分散は 0 であることと、これら3つのベクトル内の要素間の共分 散も0 である性質を用いた.

$$E({}_{n}\boldsymbol{\varepsilon}_{k}\cdot{}^{t}_{n}\boldsymbol{\varepsilon}_{k}) = diag\left(\mathbf{M}\cdot E({}_{b}\mathbf{s}_{xk}\cdot{}_{b}{}^{t}\mathbf{s}_{xk})\cdot{}^{t}\mathbf{M} + [\mathbf{C}, \mathbf{C}_{o}]\cdot E({}_{s}\mathbf{s}_{xk}\cdot{}_{s}{}^{t}\mathbf{s}_{xk})\cdot{}^{t}[\mathbf{C}, \mathbf{C}_{o}] + \mathbf{R}\cdot E({}_{s}\mathbf{s}_{gk}\cdot{}_{s}{}^{t}\mathbf{s}_{gk})\cdot{}^{t}\mathbf{R}\right)$$
$$= diag\left(\mathbf{M}\cdot diag({}_{b}\boldsymbol{\sigma}_{x}\cdot{}_{b}{}^{t}\boldsymbol{\sigma}_{x})\cdot{}^{t}\mathbf{M}\right)$$

+[**C**, **C**₀]·diag(${}_{s}\sigma_{x} \cdot {}^{s}\sigma_{x}$)·^{*t*}[**C**, **C**₀]+**R**·diag(${}_{s}\sigma_{g} \cdot {}^{s}\sigma_{g}$)·^{*t*}**R**) (30)

これにより次式が計算される.

$$E_m(\mathbf{e}_a \cdot {}^t \mathbf{e}_a) = \sum_{k=1}^{nt} {}^t \mathbf{Z}_k \cdot E({}_n \mathbf{\varepsilon}_k \cdot {}^t_n \mathbf{\varepsilon}_k) \cdot \mathbf{Z}_k \quad (31)$$

また拘束条件式誤差の期待値マトリックスは方程式誤差の 原因が測定不確かさだけならば0であるので次式が記述で きる.

$$E_m(\mathbf{e}_s \cdot {}^t\mathbf{e}_s) = E\left\{ \left(\mathbf{d} - \mathbf{S} \cdot \hat{\mathbf{a}}\right) \cdot {}^t\left(\mathbf{d} - \mathbf{S} \cdot \hat{\mathbf{a}}\right) \right\} = \mathbf{0} \quad (32)$$

これらの $E_m(\mathbf{e}_a \cdot \mathbf{e}_a)$ と $E_m(\mathbf{e}_s \cdot \mathbf{e}_s)$ を(12)式に代入し(11)式によ $m_a \Delta_a$ を計算する. この対角要素から測定不確かさ起源の 同定パラメタ不確かさ分散が得られる.

6. システム同定モデル前提の不適合率

線形性,時不変性,空間離散化近似等の同定モデルの前 提が,どの程度実現象で食い違っているかの判断を,この ${}_{m}\Lambda_{a}$ に対して, Λ_{a} の大きさを比較することによって行うこと ができる.ここで ${}_{m}\Lambda_{a}$ の j 番目の対角要素を ${}_{m}\sigma_{\lambda jj}^{2}$ で、, Λ_{a} の j 番目の対角要素を , $\sigma_{\lambda jj}^{2}$ で表す.これらの対角要素の平 方根をとって次式のシステム同定モデル前提の不適合率 β を定義する.

$$\beta_j = \frac{{}_r \sigma_{\lambda j,j}}{{}_m \sigma_{\lambda j,j}} \quad (33)$$

この β が 1 よりもかなり大きい場合には測定の条件やモデルに不適切さがあると考えられるので修正する必要がある.

7. システム同定の最適励振と測定データの最適前処理

多数室換気測定の場合と異なり伝熱系では室温の節点の みで躯体の節点は省かざるを得ず粗いモデルとなり構造的 な差異が大きい.この粗いモデルでも電熱ヒータ加熱を矩 形波ではなく 72 時間等の低周波数の正弦波で行えば比較 的良好な同定結果が得られる.この時に室温の節点の有効 熱容量には室空気だけでなく周囲壁体等のものが含まれる. 矩形波はフーリエ級数展開した際に高周波成分を持ちこれ がシステム同定に悪影響を及ぼすと考えられる.

一方,測定不確かさはギザギザの様相を示し,やはり高 周波成分であるが,移動平均のスムーシングを施せば改善 され,もし1分間隔の測定値であれば,10から60分の期 間で効果がある.

この移動平均はローパスフィルタの効果も持つ.全ての 測定値をこのフィルタにかけることで粗いモデルでも良い 結果が得られる様である.ただしローパスフィルタ機能と しての移動平均期間は8時間等の長いものとなる.最適の 期間は有効熱容量と決定係数が比較的に大きくなることで 探索できる.ただしシステムパラメタを求めるために移動 平均をかけた測定値を用いても、不確かさと信頼性の評価 のためには元の測定値を用いなければならない.

8. 模擬測定値生成モデルとシステム同定モデル

断面図南北幅 10m,図の奥行き東西幅 10m の総床面積 100m²×2=200m²で高さ 6m の2階建て2室のモデルで多数 室換気と熱性能の模擬測定値を生成した.熱的仕様は Table1 に示す.隙間風は相当隙間面積 400cm²,指数 1.5 で モデル化した. Fig.1 に示す様な構造の熱・換気回路網モデ ルを作り,様々な正弦波励振周期について、シミュレーシ ョンプログラム NETS を用いて冬季3 日間の助走期間の後 の6日間の摸擬測定値を得た.また熱コンダクタンスは同 じで壁体節点の熱容量を木造系の 2.5 倍とした重い建物モ デルも作り摸擬測定値を生成した.測定誤差が無い模擬測 定値の他に、測定不確かさ標準偏差を仮定し、乱数発生に よる誤差を加えた模擬測定値も用意した.

Table 1 Thermal properties of building materials

電熱ヒータの容量は過熱を避け周期に応じ8kwと4kwに 変えたが72時間周期の場合は各室4kwとした.トレーサ ガスSF₆の放出容量は1mg/sとし放出周期は1.5時間で停止 期間は6時間を繰り返した.これらの最適条件はCODが 比較的大きくなる様に探索法で求めた.

2種のシステム同定モデルは Fig2 に示す. トレーサガス 拡散系では2節点モデルとする. 一方実際の建物温度測定 では壁体内部と表面の理想的測定は難しいこと等から室温 測定値だけになるのでシステム同定モデルは2節点モデル とした. また換気の一般化熱コンダクタンス c_{ij}の非対称性 を考慮し伝熱系でも非対称の c_{ij} として同定するのが理想 的であるが,実際試みたところ様々な誤差原因により不合 理な結果になるので対称性の拘束を c_{ij}に与えた. 換気系のシステム同定結果は期間平均風量だから真値も 期間平均風量をとった.一方,伝熱の*c_{ij}の*真値は,その期 間平均換気量の真値を移流分とし,次に換気モデルを除き 定常熱負荷計算から貫流分を求め,両者を加えて真値とし た.日射熱取得係数の*r_{ij}は*,Table3に注釈した様に,外気 も等しく0℃一定の室温に保つための非定常熱負荷と水平 面全日射量の測定期間積分の比率 sg_iを比較参考値にした.

模擬測定計算に用いた気象データのうち,助走期間3日間を除き,模擬測定値として用いた6日間のグラフをFig.3に示す.測定模擬計算には直達と拡散の日射が使われる.

9. 多数室換気測定のシステム同定の結果

このシステム同定結果は Table2 に示す.隙間風換気量は 図4の様に大きく変動しているが、その期間平均を良好に 推定している.ただし時不変の前提の不適合によりβは1.2 と1より大きい.残差からの風量の不確かさ標準偏差は真 値からの変動を良く推定している.システム同定結果のモ デルによるガス濃度変化の予測計算値と測定値の比較をズ レが比較的大きい2階について Fig.5 に示す.換気量が小 さくなっている区間で大きな違いが生じている.

10. 伝熱系システム同定結果

システム同定で得られたモデルで予測計算した室温変動 と模擬測定値を木造系モデルで比較したグラフを Fig.6 に 示すが良好な一致をしている. Table3 には個々の ciiの真値 と推定値および各種不確かさ評価指標を示す. 有効熱容量 の推定値も全節点の熱容量総和の半分程度であり妥当と思 われる. 推定熱損失係数Qは真値より木造で1.3%, 重構 造系で4.5%程度小さいが許容範囲の推定精度と思われる. 従って節点数が少なく粗いモデルでも長周期の正弦波励振 加熱と長期間のローパスフィルタで測定データを処理する ことにより良い結果を得られる.

11. 結語

本システム同定理論を改良し妥当性を検証した. また実 現象に比ベシステム同定モデルの節点数が少なく粗い場合 でも長周期正弦波の励振を作用させ、長期間の移動平均を 測定データに施すこと等で良い同定結果が得られる.

<<p>〈謝辞〉 日本工業検査の益子智久氏には計算プログラム修正等で、 清水建設の大西由哲氏には計算機実験で御世話になりました.

- 参考文献 1) Okuyama H. System identification theory of the thermal network model and an application for multi-chamber airflow measurement. Build Environ 1990;25:349-63. 2) Okuyama H et al. Summer
- Okuyama H, et al. System parameter identification theory and uncertainty analysis methods for multi-zone building heat transfer and infiltration, Building and Environment, 54 (2012), published online: 2 Mar. 2012, pp39-52

Table 2 System identification results for multi-zone infiltration rates measurement

flow rate $c_{i,j,}$ capacity $m_{i,i}$			c _{3,2}	c _{3,1}	c _{2,3}	c _{1,3}	c _{2,1}	c _{1,2}	m _{2,2}	m _{1,1}	A.E.R.	Ave.β
Term ave. c _{i,j} , m _{i,i}			57.41	1.323	2.094	56.56	55.58	0	300	250	0.107	-
Identified results	$\sigma_m=0$		53.29	0	1.92	51.37	53	1.63	291.9	245.4	0.1	-
	$\sigma_m \neq 0$		55.31	0	3.1	52.21	52.63	0.42	285.2	241.3	0.1	-
estimated uncertainty standard deviation	$\sigma_m=0$	$_{\rm I}\sigma_\lambda$	4.414	7.919	3.86	2.513	6.891	2.396	9.591	5.396		-
	$\sigma_m{\neq}0$	$_{r}\sigma_{\lambda}$	14.72	26.44	10.59	8.161	19.64	8.645	23.37	16.02		-
		$_{m}\sigma_{\lambda}$	10.95	19.81	8.87	7.063	16	6.647	21.27	15.16		-
β		β	1.344	1.335	1.194	1.155	1.228	1.301	1.099	1.056		1.214
COD	$\sigma_m=0$		0.9641		$c_{i,j}$: flow rate from node-j to node-i (m ³ /h),where 3 means outdoor node							
	$\sigma_m \neq 0$		0.9522		$m_{i,i} : \text{capacity of node-} i \ (m^3), \sigma_m : \text{measurement uncertainty, A.E.R.:} Air \ Exchange \ Rate(1/h)$							

Table 3	System identification results for thermal	performance of a building
Table 5	System identification results for thermal	performance of a building

Heat transfer system			c _{3,2}	c _{3,1}	c _{2,3}	c _{1,3}	c _{2,1}	c _{1,2}	$m_{l,1}$	m _{2,2}	Sg_1	Sg ₂	ave.β	Q	
True values of parameter			Trans Advec 210.3 19.23	Trans Advec 207.3 0.443	Trans Advec 210.3 0.701	Trans Advec 207.3 18.94	Trans Advec 174.4 18.61	Trans Advec 174.4 0	-	-	10.4	9.51	-	2.186	
Sum of Thansmission and advection			229.5	207.7	211.0	226.2	193.0	174.4			r _{1,3}	r _{2,3}			
Identified results	W	$\sigma_m=0$		206.1	224.6	206.1	224.6	187.4	187.4	3307	3244	9.871	8.954	-	2.153
	wooden	$\sigma_m \neq 0$		205.9	225.4	205.9	225.4	186.7	186.7	3319	3289	9.935	8.932	-	2.156
		σ _m =0		199.7	221.1	199.7	221.1	191	191	7229	6784	9.568	8.621	-	2.104
	Massive	$\sigma_m \neq 0$		198.1	219.7	198.1	219.7	191.6	191.6	7122	6659	9.427	8.457	-	2.089
Paremeter uncertainty and reliability evaluation	Wooden	$\sigma_m=0$	$_{r}\sigma_{\lambda}$	4.325	3.99	4.325	3.99	3.7	3.7	125	135.3	0.335	0.3729	-	-
		$\sigma_m{\neq}0$	$_{r}\sigma_{\lambda}$	37.79	37.41	37.79	37.41	33.05	33.05	1168	1183	3.135	3.259	-	-
			$_{m}\sigma_{\lambda}$	37.92	37.08	37.02	37.08	33.21	33.21	1157	1188	3.107	3.269	-	-
			β	0.997	1.009	0.997	1.009	0.995	0.995	1.01	0.996	1.009	0.997	1.00	-
	Massive	$\sigma_m=0$	$_{r}\sigma_{\lambda}$	17.06	17.43	17.06	17.43	15.53	15.53	1182	1094	1.6	1.571	-	-
		$\sigma_m \neq 0$	$_{r}\sigma_{\lambda}$	75.26	80.37	75.26	80.37	71.48	71.48	5423	4781	7.38	6.881	-	-
			$_{m}\!\sigma_{\!\lambda}$	73.17	78.79	73.17	78.79	69.6	69.6	5318	4649	7.239	6.691	-	-
			β	1.029	1.02	1.029	1.02	1.027	1.027	1.02	1.028	1.02	1.028	1.03	-
COD	Weeden	$\sigma_m=0$		0.994		$c_{ij}: \text{generalized conductance from } j \text{ to } i \text{ (W/K)}, \text{ where symmetry } c_{ij} = c_{j,i} \text{ is induced, thermal capacity } m_{i,i} \text{ (kJ/K)}$									
	wooden	$\sigma_m \neq 0$		0.9	9934	$sg_{j}: solar \ load \ coefficient \ (m^2), r_{i,j}: solar \ heat \ gain \ coefficient \ (m^2) \ of \ node \ i \ from \ solar \ heat \ flux \ g_{i}(w/m^2).$									
	Manie	$\sigma_m=0$		0.9	$0.9913 \\ measurement uncertainty \ \sigma_m = 0: 0, \ \sigma_m \neq 0: non \ 0, \ wooden \ total \ node \ capacity = 10080 (kJ/K), \ massive = 23016 (kJ/K) \\ measurement \ uncertainty \ \sigma_m = 0: 0, \ \sigma_m \neq 0: non \ 0, \ wooden \ total \ node \ capacity = 10080 (kJ/K), \ massive = 23016 (kJ/K) \\ measurement \ uncertainty \ \sigma_m = 0: 0, \ \sigma_m \neq 0: non \ 0, \ wooden \ total \ node \ capacity = 10080 (kJ/K), \ massive = 23016 (kJ/K) \\ measurement \ uncertainty \ \sigma_m = 0: 0, \ \sigma_m \neq 0: non \ 0, \ wooden \ total \ node \ capacity = 10080 (kJ/K), \ massive = 23016 (kJ/K) \\ measurement \ uncertainty \ \sigma_m = 0: 0, \ \sigma_m \neq 0: non \ 0, \ wooden \ total \ node \ capacity = 10080 (kJ/K), \ massive = 23016 (kJ/K) \\ measurement \ uncertainty \ \sigma_m = 0: 0, \ \sigma_m \neq 0: non \ 0, \ wooden \ total \ node \ capacity = 10080 (kJ/K), \ massive = 23016 (kJ/K) \\ measurement \ uncertainty \ \sigma_m = 0: 0, \ \sigma_m \neq 0: non \ 0, \ wooden \ total \ node \ capacity = 10080 (kJ/K), \ massive = 23016 (kJ/K) \\ measurement \ uncertainty \ \sigma_m = 0: 0, \ \sigma_m \neq 0: non \ 0, \ wooden \ total \ node \ capacity = 10080 (kJ/K), \ massive = 23016 (kJ/K) \\ measurement \ uncertainty \ uncertain$										
	Massive	$\sigma_m \neq 0$		0.9889 $r\sigma_{\lambda}$: parameter uncertainty SD from residual, $m\sigma_{\lambda}$: parameter uncertainty SD from measurent uncertainty											