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STATE-SPACE APPROACH
TO BUILDING ENVIRONMENTAL ANALYSIS
USING THERMAL NETWORK CONCEPTS

By HIROYASU OKUYAMA*

Synopsis

A theory for computer simulation of thermal performance and energy use in buildings is
described.  Heat transfer in buildings consists of multifarious forms. Thermal network
concepts are described to be effective for automatically setting up a state equation in the
state-space approach. Generalized heat conductance is defined for various heat transfer forms
including mass flow and radiation. Concepts of network mode change are defined for the
time varying parameter or non-linearity. Simulation is implemented by time integration of
the state equation. For this scheme, an analytical solution based on the spectral resolution
on eigenspaces rather than the approximated solution is reintroduced. A method for re-
ducing the order of the state equation for computational efficiency is deduced simply from
the weighted residual integration in the time domain. Also, the theory of coupling subsystems
for systematic modeling is deduced from the direct sum of output equations from each

system component.

Introduction -

In the field of architectural environmental en-
gineering, there are some characteristic problems in
computerized prediction or analyses of thermal
performance and energy use in buildings. First,
there is multi-dimensional heat flow. This means,
for example, that room temperature is affected by
the surrounding variously positioned walls through
inner transient heat conductions, and further multi-
dimensional radiative heat transfers take place be-
tween wall surfaces. Second, there is heat flow
which is caused by mass flow. For example, for
air flows existing through the inner wall air layers,
attic spaces, under floor space or heating and ven-
tilating ducts, the problems include not only conduc-
tion but mass flow heat transfer as well. Third,
there is the time varying parameter or non-linear
problem. For example, if these air flow rates vary
according to a certain schedule or temperature, they
can be regarded as a thermal structure change.

These phenomena should be considered and
accurately evaluated especially in passive solar
houses. Buildings of this kind control thermal
energy flow by natural means utilizing these phe-
nomena. The thermal systems to be studied with
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such a nature can be written in a set of lumped-
parameter, coupled differential algebraic equations
from the fundamental physical laws of energy con-
servation. However, obtaining these parameters
and a set of equations for the entire system by
discretization methods, such as the finite element
method, is not necessarily the most practical and
efficient way in many cases. This is principally
because the order of the set of equations becomes
too large. Consequently, what is initially needed
is a modeling method that can realize coupling and
proper precision balance throughout the entire
system without being hampered in small domains.

On the other hand, the state-space approach has
been recognized in recent years to be an effective
method of solving dynamic problems in many en-
gineering fields. This method is based on the
vector matrix ordinary differential state equation
constructed by some number and order time deri-
vative equations describing the dynamic system and
defining proper state variables. Once the system is
represented by this state equation, many powerful
tools, such as linear algebra, modern control theory
and vector matrix numerical methods, can be ap-
plied in its study. Therefore, what is needed se-
condly is automated and systematic methods for
casting the thermal system problem into the state-
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space form.

The thermal network concepts presented in
this paper represent the key to meeting these re-
quirements and problems.

1. Formulation

Network concepts are based on the idea that
any one part of the system is connected with all
other parts of the system. Therefore, formulating
the system according to these concepts implies that
from one- to three-dimensional, and n-dimensional
problems in the engineering field can be handled
in this way. Consequently, this formulation can
be called a perfect system formulation, because
wide applications are perfectly realized from it.

These concepts involve the skeleton of the
system structure and not the outer covering plates.
One of the mathematical methods for determining
the plates is the finite element method. In the
field of architectural environmental engineering,
however, these can be accomplished directly from
the coefficient of heat transmission and the evaluat-
ing method in many cases.

The real phenomenon is modeled in z nodes
with capacitances and generalized conductances
among them. Here, generalized includes not only
the meaning of conduction but also that of mass
flow. At the arbitrary node of i, the equilibrium
equation is then written as

. ntno n+no ng
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where m;; is thermal capacitance or volume of node
i, x; and x; are temperatures of node i and j re-
spectively, ¢;; is generalized conductance from node
J to i, g; is the j-th generator of free input genera-
tors, r;; is input ratio to node i from the j-th
generator, n, is the total number of exogenous
nodes, and n, is the total number of free input
generators, The dot denotes the time derivative.
Many of the other papers working in this area
are inadequate in their formulation of boundary
conditions (see Ref. 1). In order to construct the
state equation of whole systems, formulation of
Eq. (1) is considered to be the most rational.
Therefore, defining x=*x,;, ---, x,) as the state
vector, X, =7 (Xp4;, *'*» Xpino) as the fixed input
vector and g=1%(g;, ---, &.,) as the free input
vector, the state equation (2) can be directly con-
structed from Eq. (1). Combining the second and
third terms in the right side of Eq. (2), f in Eq. (3)
can be called the heat flow input vector, such that

M x=C.x+Cyexy+R-g @)
and
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Fig. 1 Concepts of thermal network
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2. Time Integration

The state equation of the mathematical model -

was obtained as Eq. (2). The computer simulation
is implemented by time integration. The formal
solution is represented by convolutional integration
(extended Duhamel’s integration) using transition
matrix ¢, while the time functions inside the matrix,
¢, are implicit, such that practical integration can-
not be implemented. Therefore, using spectral re-
solution, this integration will 'be explicitly projected
on the eigenspaces® as {

x() = il Pyeesit=t0ux(t,) + St $ lPi.eai(t—r) fH()dr

= =

to v

\ )

where @; is the eigenvalue of matrix C*=M"1.C,
P; is corresponding projective operator matrix and
[* is the temperature input vector as in f*=M"1.f.



When f* is a random time function that cannot
be defined analytically, converting it into a discrete
time function and integrating the 4t time interval
in linear or stair interpolation, two useful recurrence
formula can be derived. The former is?

x(kdt) = ¢(41)+x((k — 1) A1) + Upe f*((k — 1)41)
+ Uye f¥(kdt) &)

where k is time number, ¢(41)= i]l P;eesi4t,

Uo=Zn}Pi' o and U,=3> P;ea; with the coeffi-
= =1

cients iy = — (1/40)-(1/a)b-e 4 4 (1/40)+(1 i)

+(1/a)e4t  and  ay=(1/40)+(1] a2t —

(1/4t)+(1/a:)*—(1/a;). The latter is.

x(kdt) = g(dt)sx((k — 1) AE) + Uy« f(kdt) (6
where Us:i‘ipi‘(l/ai)'(e"i'“— 1).

In addition, approximated integrations are also
useful. One of them, the Crank-Nikolson scheme
which is unconditionally stable and does not neces-
sarily require all m;; (i =1, --., n) to be non-zero,
can be written as

x(kdt) = gc(dt)«x((k — 1)dt) + Uge f(kdt) (D
where @o(dt)=(M ][4t —C) (M [4t) and Uc=
(M [4t— Y1 Another, the explicit scheme used

when large-sized matrix computation is difficult to
implement, is written as

x(kdt) = g(dt)ex((k —1)dt) + U, f(kdt)  (8)

where ¢ (4t)=E+ AteM~1.C and U,=dt-M™L
Note that this simple computation does not require
the whole systcm concepts except in the analysis of
transition stability®.

3. System Parameters

Capacity, m,;;, generalized conductance, c;,
and free input ratio, r;;, will be called system pa-
rameters. Although Galerkin’s method is effective
for the purpose of obtaining these parameters
precisely and mathematically, less precise, but prac-
tical methods for these parameters will be introduced
in this paper.

The space domain of real phenomenon is sub-
divided into “Control Volumes (CVs)” for inspect-
ing heat flow balances. Nodes are placed in these
centers, and heat conductions among these nodes
are regarded as steady state processes. Generalized
conductance, ¢;;, can therefore be calculated from
the coefficients of heat transmission and basic
theory. For capacity, m;, of the i-th node C.V,,
the heat capacitance or volume is assumed. For
the purpose of the discussion, some examples will
now be presented.

Figure 2 indicates a wall heat conduction sys-
tem and the thermal network model. The third
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Fig. 2 Wall section with radiation between inner surfaces

T T T T " T T —

o

1
1o

o
=g

1
160 |
R it P A

[N

l—=q
|
Ir\)o

O
Fig. 4 Thermal accumulating vessels of cascade connection

node represents the air layer temperature, while the
2nd and 4th nodes represent the surface temperatures
of both edges respectively. These capacitances are
assumed to be m,, =m,; =0. Between these latter
two nodes is a radiative heat transfer process which
can be described by the Stephan-Boltzman law with
form factors. Approximating linearity, radiative
heat conduction, c;;, can then be defined®.

Figure 3 illustrates a deformed wall section
and the thermal network model. Thus, heat con-
ductances among nodes can be calculated in a two-
dimensional domain on the basis of the usual heat
transmission evaluating method. This will also

47



hold true even in the three-dimensional domain.

Generalized conductances, c¢;;, in the above ex-
ample have the important characteristic of symmetry,
namely ¢;;=cy which is unique to conduction
systems. On the contrary, the temperature is
transported by mass flow or advection in the
example below.

Figure 4 represents the thermal accumulating
vessels of a cascade connection and the thermal
network model. The directed arc with the diode
notation represents one-way generalized conductance
by mass flow, which has the property of asymmetry,
c;;j=¢q, with c;=0 defining the flow rate from
nodes j to i as g (kcal/°C-hr).

The last example, as shown in Fig. 5, explains
input ratio, r;;, with regard to solar radiation. The
figure symbolizes the six components of solar
radiation, that is, g, (south), g, (north), g (east),
g4 (west), g5 (zenith) and g, (nadir) projected on a
rectangular space coordinate, with the normal unit
vector, n, on the receiving surface and the angles
of azimuth, e, or tilt, 8. Here, positive direction
of angle, ¢ is defined westward. The solar receiv-
ing surface is assumed to be the i-th node with an
area of w and solar adsorptivities of ay, a,, as, ay,
as and ag for each solar radiation component. The
input ratios, r;;, can then be calculated as follows:

a) if sin f+cosa =0, then

rii=a;*wsin fecose and r;,=0
b) if sin f+cose <0, then

l'“=0 and Fiog= —QgeWe sinﬁ-cos<y
¢) if — sin B+sina =0, then

ri3= —agewesin Besine and r;;=0"-

d) if — sinf+sin @ <0, then
r;3=0 and r;;=as;w-sinf+sina
e) if cosp =0, then
ris=as*wecos i and
f) if cosp <0, then
ri5=0 and r;g= —ag-w-cosp
Consequently, the input ratios, r;;, for the solar
radiation components are constant in time if the
building location and direction are fixed.

ri_6=0

4. Network Mode Change

The change of generalized conductances, c;;,
or the change in number of »n and n, without a
change of the total number, n+ ny, will be defined
as the network mode change. One of the physical
meanings implied is that only the thermal connect-
ing means or connecting intensities change without
a vanishing or formation of material parts in the
system. The other meaning, concerning space
temperature, is that when fixed by the HVAC
system, number n decreases and n, increases since
the latter represents the total boundary number of
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Fig. 5 Solar radiation compornents

the fixed nodes. In this way nonlinear problems
can be solved in a narrow sense. '

Let us now consider the total kinds of network
modes, my, appearing in the simulation period.
These network modes can be numbered m=1 to
mg. In each mode, the transition matrix, ¢, and
drive matrix, U, should be computed in advance
of simulation according to the theory described in
Section 2. Therefore, simulation of network mode
change can be implemented by time integration using
transition and drive matrices according to each
mode during the time interval, 4t _ “

The passive solar house in Fig. 6 is preferable
to best explain these concepts practically. This
building consists of an attached greenhouse, thermal
accumulating rock bed, double skin and adobe
wall. Solar control and insulation~.zsls 2re re-
presented by node 1, window panes by node 2, the
adobe wall by nodes 10 to 12, the rock bed by
nodes 17 to 20 and underground temperatures by
nodes 21 to 23. Double skins are represented by
nodes 4 to 6 and 7 to 9, with nodes 5 and 8
representing air layers in particular. Air in the
rock bed is represented by nodes 13 to 16. Con-
stant underground temperature and atmospheric air
temperature are represented by nodes 25 and 26
respectively which are input variables. On the
other hand, the space temperature of node 24 is
variable between the input and state variables
according to whether it is fixed by the HVAC
system or not.

In this example various network modes can be
realized by changing the air flow paths and the
open or closed states of the solar control panel.
Figure 7, for example, plots the heat accumulating
mode circulating warmed air between the greenhouse
and rock bed. Figure 8 illustrates the space heat-
ing mode releasing the stored heat in the rock bed.

The state vector, x, is then obtained primarily
in each time integration step, and additional engi-
neering index outputs, such as heating load or
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Fig. 6 Passive solar house

Fig. 7 Thermal accumulating mode

environmental temperature, can be further computed
by y=F+!(‘x, tx,, ’g), defining proper output vector,
», and matrix, F.

5. Condensation of State Equation

If the size of the state equation, n, is very
large, the following approximately condensation
method, which helps improve computation econo-
my, can be used to reduce the size. Subdividing
the state vector, x, into the master vector, x,,, and
slave vector, x,, accordingly subdividing the con-
ductance matrix, C, Eq. (9) is written as (v#0)

m.mc m.sC _xm 4
. = ©)
s.mC a.sC xs 0
Since x, is made a slave to x,, Eq. (10) is obtained
as
Xy = _s,sc_l's.mc'xm=L'xm (10)

Using Eq. (10) the approximated & to x can be
written as

Fig. 8 Heating mode

E

F=| " lex,=Vex, an
L -

where E,, is the unit materix sized x,. Weighted
residual time integration along the period of [0, T1]
is equated to 0, in which vector % is also used
for the weighting function, as in

ST&.(M.;%— Cei— f)dt
0

T
=S (VM oV oky—tV e CoV o,
0

— Ve f)dt=0 (12)
This is identically satisfied by substituting
YVeMeVex,, =VeCeVex, +Vef 13)

which is the condensed state equation. In addition,
decreasing the state equation size, by subdividing
the system in place of this condensation will be
proposed in the following section as the theory of
coupling linear subsystems.
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Fig. 9 Concepts of coupling subsystems

6. Theory of Coupling Subsystems

The state equation (14) can also be written
with respect to the j-th subsystem, which is one of
the total components constituting the entire system.
If the component is a building or thermal storage
tank, a detailed explanation has already been
offered in Sections 3 and 4. In addition, even if
the component exhibits non-linearity, linear ap-
proximation can be accomplished by defining the
conductance matrix as a Jacobian matrix differen-
tiated by the state vector. State equation (14) as
described is then written as

()= C*ex;(t) + f7*(1) (14)

Recurrence formula (15), obtained after eigenvalue
analysis of Eq. (14), is written as

%00 = 6,(40)-x;(k — 1) + Upye f7*(®) (15

where the forcing vector, f;*(¢), is assumed to be
a time step function for simplicity. The whole
system state vector, X, can be defined by the direct
sum of X:xl—f-xz-i- ------ —]—xns, where n, is the
total component number and x; denotes the state
vector of the j-th component. Vector x; can be
represented by vector X in Eq. (16) as
x;(t) = D, X(1) (16)
where matrix D will be called the relating matrix.
The subspace spanned by the output variables in
vector x; will be defined as the output vector, y,.
Therefore, the output vector, Y, in the whole
system will be defined by the direct sum of ¥ =
y1+ ) A eeenne + Yas- The forcing vector, f;, is re-
presented by the vector Y, fixed input x, and free
input vector g in Eq. (17) as
Si(8)= Dy;+ Y(t) + Do)+ Xo(1) + Dyjseg(1) (A7)
Accordingly, the k-th time step state vector, x,(k),

of the j-th component represented in Eq. (15) can
be rewritten into Eq. (18) using the vectors X, Y,
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x, and g and the relationships of Egs. (16) and
(17) as
x;(k)=¢;(41)+ Dy X(k— 1)+ Uy ;+ D, 5+ Y(K)
+ Uyje Dyjexo(k) + Uy Dy g(k) (18)
The output equation (19) can be derived from Eq.
(18) as
Vi) =Sz ;« X(k— 1)+ S,;+ Y(k)

+ S xo(k) + Sy ;8(k) 19
by selecting out row equations from matrices in
the right side, of which the row positions corres-
pond to the points where y; elements are placed
in x;. Here, matrix S will be called the submatrix.
Vector Y(k) is represented by either Eq (20) or
(20y as

Y(k)=p,+ 4 Pus=[Sar ] X(k—1)
‘S:xns

+[S, 1 Y (k) +[ S, 1'x0<k)+ Sy }.g@
‘S:yns_ ‘S:ons_ ‘S:g'ns
0y
and

=5, X(k — 1)+ 5, - Y(k) + Syex0(k) + 5, g (k)
(20)
using the direct sum of Eq. (19) from each com-
ponent. Consequently ¥Y(k) can be solved as

Y(k) = W+ Xk — 1)+ Worxo(k) + W,e(k) Q1)
where matrices W are computed by Egs. (23) to

(25), using the output variable transition matrix, ¢,
computed by Eq. (22). These equations are listed as

o=(E—5,)1 22)
W, =S, (23)
Wo=0+S, 24)
W, =S, @5)

Equation (21) is a recurrence formula for output -
variables in the whole system. Note that if the
time integration interval, 4¢, and operating mode
are given, matrices W become constant. Therefore,
when there are a finite number of operating modes,
solving simultaneous equations at every time step
is not required, relative to preparing these matrices
before simulation. Whole system time integration
can be implemented by repeating the following
algorithm:

(i) Compute the whole system output vector,
Y(k), at the k-th time step by Eq. (21), using the
whole system state vector X(k —1) at the (k —1)-th
time step and input vectors x,(k) and g(k) at the
k-th time step.

(ii) Compute the subsystem state vector x;(k),



in each component using Eq. (18).

7. Summary and Conclusions

Thermal network concepts that can be used
for automated and systematic method for casting
the relevant problems into state-space form have
been described. Time integration schemes of state
equations were overviewed, and in particular, an
exact analytical scheme using the eigenvalue analysis
by the author was reintroduced.

Some of the features of heat transfer in build-
ings, such as multi-dimensionality or mass transfer,
were indicated, and calculation methods for system
parameters were respectively described.  Further-
more, time varying and non-linearity characteristics
of these thermal systems were also indicated, and
for these problems, network mode change concepts
were presented as being effective.

For computational efficiency, the system con-
densation method reducing the order of state equa-
tion, and for systematic modeling, the theory of
coupling subsystems were deduced. This modeling
and simulation method can be expected to become
the basis for identification of system parameters?
or optimum control theory in the future.
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